INFORMATION FROM STANDARD & FACTORED FORMS

How can STANDARD FORM and FACTORED FORM help us to graph a Quadratic Equation??

FORM	EQUATION	TELLS US	WE CAN
STANDARD	$y = ax^2 + bx + c$	y – intercept "c"	Factor the
		(0 , c)	equation!!
FACTORED	y = a(x – r)(x – s)	x – intercept(s) *ZEROS*	Find the axis of symmetry!!
		(r, 0) and (s, 0)	A of S: <u>(r) + (s)</u> 2

<u>FIND THE Y-INTERCEPT</u> $(y = ax^2 + bx + c)$

 $y = 7x^2 + 2x - 5$ let x = 0

What's an easier way to find the y-intercept???

Find the y-intercept for the following equations in Standard Form:

a) $y = 11x^2 - 6x - 15$ b) $y = x^2 + 13x + 4$ c) $y = -6x^2 = 10x - 8$

QUICK REFRESHER: FACTORING TRINOMIALS!!

a) $x^2 + 5x + 6$ b) $x^2 - 5x - 24$ c) $5x^2 + 25x + 20$

FIND THE X-INTERCEPTS...THE ZEROS

$$y = a(x - r)(x - s)$$

STEP 1: Change the equation from Standard Form to Factored Form, by factoring
STEP 2: Set y = 0
STEP 3: Solve for x

Find the zeros of the following equations: a) $y = x^2 - 8x - 33$

b)
$$y = 2x^2 + 6x - 80$$

FIND THE AXIS OF SYMMETRY... USING THE ZEROS

The Axis of Symmetry is in the CENTRE of the zeros!

a) zeros: (-3 and 7)

b) zeros: (5 and -8)

A of S =
$$\frac{r+s}{2}$$